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ABSTRACT 

 

Cardiovascular modeling has the capability to provide valuable information 

allowing clinicians to better classify patients and aid in surgical planning.  Modeling is 

advantageous for being non-invasive, and also allows for quantification of values not 

easily obtained from physical measurements.  Hemodynamics are heavily dependent on 

vessel geometry, which varies greatly from patient to patient.  For this reason, clinically 

relevant approaches must perform these simulations on patient-specific geometry.  

Geometry is acquired from various imaging modalities, including magnetic resonance 

imaging, computed tomography, and ultrasound.  The typical approach for generating a 

computational model requires construction of a triangulated surface mesh for use with 

finite volume or finite element solvers.  Surface mesh construction can result in a loss of 

anatomical features and often requires a skilled user to execute manual steps in 3rd party 

software.  An alternative to this method is to use a Cartesian grid solver to conduct the 

fluid simulation.  Cartesian grid solvers do not require a surface mesh.  They can use the 

implicit geometry representation created during the image segmentation process, but they 

are constrained to a cuboidal domain.  Since patient-specific geometry usually deviate 

from the orthogonal directions of a cuboidal domain, flow extensions are often 

implemented.  Flow extensions are created via a skilled user and 3rd party software, 

rendering the Cartesian grid solver approach no more clinically useful than the 

triangulated surface mesh approach.  This work presents an alternative to flow extensions 

by developing a method of applying vessel inlet and outlet boundary conditions to 

regions inside the Cartesian domain. 
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PUBLIC ABSTRACT 

 

Cardiovascular modeling has the capability to provide valuable information 

allowing clinicians to better classify patients and aid in surgical planning.  Modeling is 

advantageous for being non-invasive, and also allows for quantification of values not 

easily obtained from physical measurements.  Fluid flows are heavily dependent on 

vessel geometry, which varies greatly from patient to patient.  For this reason, clinically 

relevant approaches must perform these simulations on individual patient geometry.  

Geometry is acquired from various imaging methods including MRI, CT, and ultrasound.  

The typical approach for generating a computational model requires construction of a 

triangulated surface mesh for use with finite volume or finite element solvers.  Surface 

mesh construction can result in a loss of anatomical features and often requires a skilled 

user to execute manual steps in 3rd party software.  An alternative to this method is to use 

a Cartesian grid solver to conduct the fluid simulation.  Cartesian grid solvers do not 

require a surface mesh.  They can use the geometry representation created during the 

image segmentation process, but they are constrained to a box shaped domain.  Since 

individual patient geometry usually deviate from the perpendicular directions of a box-

shaped domain, flow extensions are often implemented.  Flow extensions are created via 

a skilled user and 3rd party software, rendering the Cartesian grid solver approach no 

more clinically useful than the triangulated surface mesh approach.  This work presents 

an alternative to flow extensions by developing a method of applying vessel inlet and 

outlet boundary conditions to regions inside the Cartesian domain. 
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CHAPTER 1 INTRODUCTION 

1.1 Applications of computational modeling in the cardiovascular system 

Computational modeling in the cardiovascular system is an active area of 

research.  Modeling capabilities in this field continue to be developed and enhanced, with 

efforts focusing on enabling advancements in the ability to understand disease 

development, progression, and treatment pathways.  Most of the applications can be 

grouped into five general categories.   

First, consider computational modeling for the understanding of disease 

development and progression.  An example of this is Groen et al. in [1] where 

computational fluid dynamics is used to correlate wall shear stresses with plaque 

composition and rupture.  Magnetic Resonance Imaging (MRI) data was used to 

construct a volumetric mesh for simulation purposes.  Upon completing these simulations 

they had evidence to conclude that high wall shear stresses influence plaque vulnerability 

and may be a reliable predictor of rupture. 

Computational modeling can be used to identify and evaluate alternative 

treatments.  Esmaily-Moghadam et al. present an exciting example of this in [2] where 

they evaluate alternative surgical treatments for hypoplastic left heart syndrome.  The 

traditional treatment plan consists of three surgical procedures to correct this congenital 

defect.  Computational modeling was used to investigate alternatives to the traditional 

approach.  The simulations were performed on idealized geometric models.  The models 

were volumetrically meshed to perform a finite element simulation with lumped 

parameter boundary conditions.  The insights gained from these idealized models have 
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resulted in the group identifying a promising two-step procedure to replace the traditional 

approach. 

Research and development of new medical devices is another area where 

computational tools have the potential for large impact.  For example, Borazjani et al. in 

[3] use a curvilinear immersed boundary method to simulate the fluid structure 

interaction (FSI) of a bi-leaflet mechanical heart valve operating through the cardiac 

cycle.  The motivation for doing so is to better design mechanical heart valves to 

minimize thrombus formation, which is thought to be caused by the high fluid shear 

stresses near the valve hinge regions.  Putting a tool such as this in the hands of research 

engineers at medical device companies, would likely produce better quality products 

resulting in improved patient outcomes. 

Computation modeling can be used to make non-invasive measurements and aid 

in patient classification.  For example, Taylor et al. in [4] have developed the capability 

to evaluate Fractional Flow Reserve (FFR) in patients with coronary occlusion.  FFR has 

been shown to be a useful index for determining the severity of coronary stenosis [5].  

Starting from patient-specific Computed Tomography (CT) data, Taylor et al. are able to 

extract patient geometry, create a volumetric mesh, apply lumped-parameter boundary 

conditions, and solve for FFR using the Finite Element Method (FEM).  The 

measurement of FFR is traditionally performed via catheter, thus computational modeling 

enables a technique to obtain these measurements in a less-invasive manner.  

Finally, computational modeling can also be used for patient-specific treatment 

planning.  Xiong et al. in [6] have developed a method of assessing and optimizing 

patient-specific outcomes by simulating medical interventions of stent and graft 
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deployment.  Patient image data is reconstructed as a triangular surface mesh.  The 

geometric mesh is cut and spliced to replace the diseased portion of the vessel with the 

treatment geometry, allowing for the simulation and prediction of the proposed treatment.  

When developed into a clinical tool, this will allow for clinicians to tailor the treatment to 

the individual patient.   

The latter two applications described above have focused on the development of 

patient-specific modeling within the clinical environment.  It should be evident that a 

simulation tool developed for the clinical environment requires specific features.  It 

should be a single software platform and require minimal data transfer/translation.  It 

should also be designed for ease of use with minimal training or user specific knowledge 

required to conduct the simulation.  Methods intended to streamline this process or 

decrease user burden are integral to bringing these applications to fruition. 

1.2 Challenges of patient-specific modeling in the clinical environment 

As described above, numerical simulations have been shown to be a useful tool in 

patient classification and surgical planning [4], [6], [7].  Variation in patient parameters 

and geometry can have significant effects on the cardiovascular hemodynamics, thus 

individual patient simulation is the ideal approach [8].  Patient geometry may be acquired 

through a variety of non or minimally-invasive imaging techniques including, magnetic 

resonance imaging (MRI), computed tomography (CT), and ultrasound.  The process of 

performing simulations from these images follows a typical set of steps [6], [7], [9].  The 

image is first filtered and segmented, for which the levelset approach is commonly used 

[10], [11].  Often a marching cubes method is used to convert this implicit surface 

representation into an explicit triangular surface mesh [12].  Depending on the specific 
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patient geometry, several additional mesh processing steps are performed including mesh 

smoothing, trimming, elongation, refining and remeshing.  This surface mesh is then used 

to construct a volumetric mesh.  Finally, a finite volume or finite element method is used 

to perform the computational fluid dynamic (CFD) simulation. 

While software packages such as Mimics® and VMTK have become available to 

aid in the construction of the surface/volumetric meshes, the process still requires 

significant intervention from a skilled user.  Often the flow computations are performed 

in a software different from which the mesh is generated.  These two factors render this 

traditional process as too burdensome for the clinical environment.    

Cartesian grid CFD solvers offer an alternative solution by eliminating the need 

for construction of surface or volumetric meshes.  This process begins in a similar 

fashion to the traditional approach previously described.  As before, the image is first 

filtered and segmented using the level set method.  However, rather than using the level 

set field to generate a surface mesh, level set values can directly map onto the Cartesian 

grid domain using an immersed boundary type method to apply boundary conditions at 

the vessel walls.  Image-to-flow computation without a volumetric mesh is an attractive 

solution which has spurred many groups to pursue this capability [13]–[16]. 

While the advantages of image-to-flow computation on a Cartesian grid are 

substantial, there exists a burdensome restriction that has yet to be sufficiently resolved.  

Cartesian grid solvers operate by embedding an implicit representation of the geometry 

inside a rectangular or cuboidal domain.  All inlet and outlet boundary conditions are thus 

applied to the domain boundary (sides of the rectangular or cuboidal domain).  This 

means all vessels must extend to a side of the domain, crossing it in a perpendicular 
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orientation.  Unfortunately, physiologic geometry is tortuous and does not typically 

conform to these burdensome restrictions.  Despite efforts to selectively rotate and crop 

geometry, much of the patient data will not conform to a rectangular or cuboidal domain.  

The top face of Figure 1 is a clear example of patient geometry that doesn’t meet the 

necessary requirements.  The vessel crossing the top face does so at an angle other than 

90 degrees.  A boundary condition applied to this vessel has the potential to create 

undesired entrance effects.   

1.3 Challenges with the conventional approach to Cartesian domain boundaries 

In Cartesian domains, flow extensions can be used to incorporate a 

“nonconforming” vessel within a rectangular/cuboidal domain.  For simplicity, consider 

the idealized 2D aorta representation shown in Figure 2a.  An example of the flow 

extensions needed to compute this geometry using a Cartesian grid solver is shown in 

Figure 2b.  Flow extensions have multiple major drawbacks.  First, non-physiologic 

vessel curvature is often introduced to align the ends of the vessel perpendicular to the 

domain.  This added curvature has the potential to introduce unwanted secondary flows 

thus decreasing the accuracy of the simulation.  Second, the added cells increase the 

domain size, and thus the computation time.  Third, flow extensions limit the locations 

where boundary conditions can be applied.  This is demonstrated by considering the 

original geometry shown in Figure 2.  To perform an accurate simulation of flow through 

the aorta, one would apply a known velocity profile, as described in [17], to the inlet at 

the aortic root as denoted by AR in Figure 2a.  The measured velocity profiles should be 

applied as the inlet boundary condition at location 1 of Figure 2b, but due to the addition 

of the flow extension, the velocity profile can only be applied to location 2.  The fourth 
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and most significant drawback of flow extensions, is the manual process required to 

construct them.  A skilled user must apply his or her best judgement in creating 

appropriate flow extensions using a third party software.  Using multiple software 

applications with manual input of a skilled user is in conflict with the goal of developing 

a tool that can be used in the clinical environment.  Flow extensions are sometimes used 

for reasons other than conformance to the Cartesian domain.  They can be used to 

generate a fully developed velocity profile from a uniform velocity inlet.  Directly 

applying the velocity profile is a better alternative due to the computational savings. 

1.4 Proposed alternative – Interior boundary conditions 

This work presents an alternative to flow extensions by applying boundary 

conditions to the interior of the rectangular domain rather than the conventional approach 

of applying them to the sides of the rectangular domain.  The general approach combines 

user defined interior boundary cap locations with the implicit geometric representation in 

order to identify interior cells that will be reclassified as boundary cells.  These interior 

cells are then inserted into the conventional domain boundaries for computational 

purposes.  This concept is illustrated in Figure 3.  Multiple modifications must be made 

to the flow solver to accommodate the difference between the interior boundary cells and 

the domain boundary cells to which boundary conditions are traditionally applied.  

Additional flow solver modifications are necessary to allow the interior boundary 

conditions to be supplied at an orientation other than perpendicular to the domain 

boundary. The method developed and implemented is described in Chapter 2, with 

validation studies and applications of this technique demonstrated in subsequent chapters. 
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Figure 1: Example of a typical physiologic geometry which fails to conform to a 

Cartesian domain.   

 

 

Figure 2: Flow extensions for conventional domain boundaries. (a) 2D representation of 

idealized aorta geometry (b) Idealized aorta with flow extensions that would be 

traditionally required to perform flow computation on Cartesian grid solver. 

a b 

1 

2 

AR 
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Figure 3: Illustration of cells near the desired interior boundary cap being inserted into 

the conventional domain arrays for purposes of applying vessel inlet/outlet boundary 

conditions. 
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CHAPTER 2 METHODS 

 To implement the method of interior boundary caps, one must consider all aspects 

of the computational framework which may be affected.  First the specific features and 

capabilities of the computational framework must be considered.  For example, flow 

solvers which have the ability to automatically refine the computational mesh must be 

handled differently from those which do not.  Next, the parameters needed to fully define 

the interior boundary cap location, orientation, mapping, etc. must be identified.  Then, 

construction of the Cartesian domain must be examined for required changes.  Cell 

classifications per the features of the flow solver must be also be considered.  Finally, the 

discretization schemes used to perform the CFD computation must be examined and 

modified accordingly. 

2.1 Specific features of the selected computational framework 

While this approach can be applied to many Cartesian based CFD solvers, it has 

been developed with respect to pELAFINT3D.  pELAFINT3D is a software package 

specializing in simulation of Fluid-Structure Interaction (FSI) problems of 

incompressible fluid flow.  The boundary conditions from the immersed geometry are 

communicated to the flow equations via a sharp interface approach which directly 

incorporates the boundary conditions into the discretization operators near the interface 

[18].  Multiple sharp interface methods have been developed.  This framework employs 

the Ghost Fluid Method (GFM) [19]–[21].  It utilizes a four step pressure correction 

scheme to solve the incompressible Navier-Stokes equations [22]–[24].  pELAFINT3D is 

massively parallel with the partitioned domain being load balanced at regular intervals 

[25].  Mesh pruning has been implemented to remove cells far from the region of interest 
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for computational efficiency.  Automatic Local Mesh Refinement (LMR) is used to 

increase the simulation accuracy while minimizing the computational burden [25], [26].  

The immersed geometry is represented via level set function.  This package also includes 

the capability to filter and segment the patient images allowing for a complete image-to-

flow computation [27].  

2.2 Comparison of Cartesian grid construction 

To clearly describe the method of applying internal boundary caps, it is helpful to 

identify the steps employed to create the Cartesian grid, and embed a geometry of interest 

within the domain, represented using level sets.  First consider the case for conventional 

boundary conditions shown in Figure 4a-d.  Initially a rectangular or cuboidal domain is 

created to a particular size and cell spacing per user specification.  The geometry is then 

immersed in the Cartesian grid (a).  For the image-to-flow application, the geometry is 

inserted by mapping the level set field created from image segmentation.  For the case of 

conventional domain boundaries, the geometry is restricted to having all vessels extend to 

and align perpendicular to the sides of the domain.  Next the initial base mesh is pruned 

to remove cells far outside the geometry resulting in significant computational savings 

(b).  LMR then automatically refines the mesh via octree method [26].  The cells near the 

vessel wall are the smallest refinement level allowed (c).  Level set values are then used 

to determine which cells are inside the fluid domain and then flagged accordingly.  

Finally, the flow solver is able to perform the flow computations (d).   

This process is slightly altered when implementing the internal boundary end caps 

(Figure 4e-h).  The initial creation of the rectangular or cuboidal domain boundary 

remains the same.  Now, however, the geometry can be placed into the domain with 
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fewer restrictions (e).  In the same manner as before, the cells far outside the geometry 

are then pruned from the computational domain.  An additional step defines the interior 

boundary caps from user specified values (f).  LMR proceeds in a similar manner by 

refining near the vessel walls, but also refines to the lowest allowed level near the 

boundary cap (g).  Fluid cells are now determined by two criteria.  These cells must have 

a positive level set and must lie in the region between the boundary caps.  Thus, not all 

cells with a positive level set value will be considered part of the fluid domain.    The 

flow solver is then able to conduct the flow simulation (h). 

Since conventional domain boundaries are applied to the sides of the cuboidal 

domain, they have the advantage of being oriented in the direction of the Cartesian rows 

and columns.  It would be simple to implement interior boundary caps in those same 

orientations, but this would not provide the flexibility needed to accommodate the 

variability of physiologic geometry.  For this reason, the current framework has been 

developed to support all of the following configurations shown in Figure 5.  The 

inlet/outlet vessels can (a) end short of the domain boundary, (b) cross the domain 

boundary, or (c) any combination of the two.  Also, vessel orientation is no longer a 

restriction.  It should also be evident that the geometry can now be oriented in any 

manner.  Figure 5d shows how conventional domain boundary conditions may also be 

combined with interior boundary caps. 

2.3 Defining interior boundary cap parameters 

To perform a simulation utilizing interior boundary caps, additional parameters 

are needed.  The current framework requires three additional inputs for each boundary 

condition.  First is the Cartesian coordinates of the point where the vessel is to be cut.  
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Second is a unit vector defining the orientation of the boundary cap cut plane.  The 

current convention is for the vector pointing toward the fluid domain.  Third is the side of 

the Cartesian domain the boundary cap is to be mapped onto.  For the current framework, 

all of these parameters are defined by the user. 

2.3.1 Locating the boundary cap endpoints 

After construction of the initial base mesh, the first step of implementation is to 

locate the boundary cap endpoints.  These are the locations where the boundary cap plane 

crosses the zero level set contour.  All points in the zero level set array are tested for 

proximity to the plane defined by the cut point and the normal vector (boundary cap 

plane).  This framework utilizes a narrow level set tube approach with the cells adjacent 

to the interface populated into the zero level set array [10].  Tortuous vessels may cross 

the boundary cap plane more than once resulting in extra zero level set cells being 

identified.  For the 2D case, only the two closest zero level set points are used to 

construct the boundary cap end points.  Neighbors of each are used with a least squares 

method to construct a line representing the interface at that location.  The intersection of 

the line and the boundary cap plane is taken to be the boundary cap end point.  This 

newly defined interior boundary cap region (between the two end points) is used as 

criteria for the adaptive mesh refinement.  Cells within a prescribed distance from the 

boundary cap region are refined to the smallest cell size allowed.  We have found a 

distance of twice the base cell size to be sufficient refinement criteria. 
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2.4 Cell reclassification 

When creating the initial domain, the conventional domain boundary cells are 

already known from construction of the Cartesian base mesh.  Upon inserting the vessel 

geometry, these cells are tested for a positive level set value where the vessel crosses the 

cuboidal domain boundary.  This process of conventional domain boundary cell selection 

and fluid cell reclassification is illustrated in Figure 6(a-c), with Figure 6(d-f) showing 

the steps for interior boundary caps.  First the initial grid is constructed Figure 6(a,d).  

The geometry is inserted, such that cells outside the geometry are classified as solid, 

denoted as hollow circles Figure 6(b,e).  Conventional domain boundaries then use only 

the level set value to determine which cells are to be used for applying boundary 

conditions, marked by X’s  Figure 6(c).  Both the level set and interior boundary cap 

plane are used to identify boundary cap cells.  A search algorithm is implemented to 

identify cells just inside of the boundary cap plane and inside the vessel.  This will results 

in a stair step arrangement of interior boundary cap cells to which vessel inlet or outlet 

boundary conditions will be applied.  Cells in the domain boundary arrays are removed 

and the boundary cap cells are populated instead.  Cells outside of the boundary cap 

plane, regardless of their level set value, are reclassified as solid Figure 6(f). 

Tortuous geometry may result in a boundary cap plane which crosses another 

region of the vessel. The inlet at the aortic root (AR) from Figure 2(a) is an example of 

this.  The boundary cap plane defining this inlet also crosses the descending aorta.  Thus, 

an additional criteria must be used to determine which cells should no longer be part of 

the fluid domain.  This specific approach limits cell reclassification to a distance beyond 
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the endpoints of the boundary cap line.  Twice the level set tube thickness has been found 

to be sufficient criteria. 

2.4.1 Ghost Fluid cell classification 

Since the current framework utilizes GFM for the immersed boundary conditions, 

GFM classification of cells must also be considered for the use of interior boundary caps 

[28].  Computational cells are given one of five classifications:  (1) Fluid cells are located 

in the fluid domain far from an interface; (2) Hybrid cells are in the fluid domain, but are 

in close proximity to the solid interface.  These cells are given special treatment to reduce 

pressure oscillations when the boundary is moving.  Only stationary geometry is 

currently being considered; therefore, the hybrid cells will be treated as if they are fluid 

cells; (3) Solid cells are far outside of the fluid domain and are thus not included in the 

GFM computations; (4) Ghost cells are also outside the fluid domain, but have a neighbor 

inside the fluid domain.  It is these cells which will have a ghost value computed for use 

in the finite difference schemes; (5) Finally, boundary cells are ones to which domain 

boundary conditions are applied.   All cells selected for the interior boundary cap will be 

reclassified to GFM boundary type.  Also, all fluid or hybrid cells which now lie on the 

outside of the interior boundary cap plane are reclassified to GFM solid type.   

2.5 Flow solver modifications 

Conventionally, domain boundary conditions are applied to a layer of zero 

thickness cells constructed on the surface of the cuboidal domain (domain boundary 

cells).  The method of interior boundary caps instead applies the constraints to cells 

inside the domain, which can be oriented in any direction, and thus are likely to be 
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arranged in a stair-step manner.  Figure 7 shows the three main differences between these 

cells.  The flow solver must be modified to accommodate these differences.  First is cell 

spacing (Figure 7a,d).  Since the domain boundary cells have zero thickness, the cell 

centers lie directly on the face of the first interior cell resulting in the distance between 

the cell centers being only half the cell width.  Everywhere inside the domain, the 

distance between cell centers is the full width of the cell, which is the case for the interior 

boundary cap cells.  Finite difference schemes must be modified for every step of the 

flow solver.  Second is the boundary cell contribution (Figure 7b,e).  Conventional 

domain boundary cells lie on the surface of the cuboidal domain and thus only contribute 

a flux to one interior neighbor.  This is also true for many of the boundary cap cells.  

When the boundary cap is not parallel to the cuboidal domain, boundary cap cells will be 

selected in a stair step manner.  At each stair step the last boundary cap cell will have two 

interior neighbors, thus contributing a flux to each.  Finally the boundary orientation must 

be considered (Figure 7c,f).  Conventional domain boundaries are always in the direction 

of the Cartesian grid.  All Neumann boundary conditions or extrapolations simply use the 

cells in that particular row or column.  Since interior boundary caps are not necessarily 

oriented in a Cartesian direction, the cells needed to calculate Neumann boundary 

conditions or extrapolations may include cells from other rows and columns.    

2.5.1 Time splitting method 

To outline the changes to the flow solver due to these differences, the specifics of 

the four step pressure correction algorithm must be described.  Sub-iterations are used to 

march the solution forward in time.  The starting point is the incompressible Navier-

Stokes equations for a Newtonian fluid.  The non-dimensional form of these equations is 
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shown below with u and p denoting the non-dimensional velocity and pressure fields.  U 

and L are the characteristic length and velocity scales of the problem with ν as the 

constant kinematic viscosity. 

𝜕𝒖

𝜕𝑡
+ (𝐮 ∙ ∇)𝐮 = −∇𝑝 +

𝜈

𝑈𝐿
∇2𝐮       (2.1) 

∇ ∙ 𝐮 = 0           (2.2) 

A four step pressure correction scheme is used to solve these equations.  First, a 

provisional velocity denoted by u* is calculated from the momentum equation.  The time 

derivative is computed using a second order backwards differencing scheme.  The 

convection and pressure gradient terms are explicitly computed from the most recent 

values available, either the previous sub-iteration or the previous time step.  This results 

in the following representation of the momentum equation where the n superscript 

denotes the time step, k denotes the sub-iteration and α is a scalar value based on the time 

step sizes. 

(𝛼1𝐮
∗ + 𝛼2𝐮

𝑛 + 𝛼3𝐮
𝑛−1) + ((𝐮 ∙ ∇)𝐮)

𝑘

𝑛+1
= −∇𝑝𝑘

𝑛+1 + 𝜈∇2𝐮∗   (2.3) 

 All of the explicit terms can be moved to the right hand side resulting in the 

following Helmholtz equation. 

𝛼1𝐮
∗ − 𝜈∇2𝐮∗ = −𝛻𝑝𝑘

𝑛+1 − 𝛼2𝐮
𝑛 − 𝛼3𝐮

𝑛−1 − ((𝐮 ∙ ∇)𝐮)
𝑘

𝑛+1
   (2.4) 

Before solving the Helmholtz equation the explicit convection and pressure 

gradient terms must be evaluated.  Both of these computations must be modified to 

accommodate the implementation of interior boundary conditions. 
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2.5.2 Modification to the gradient scalar calculation 

 First consider the gradient of a scalar calculation.  For this instance the scalar field 

is pressure.  The pressure values from the previous sub iteration will be used to perform 

this calculation.  The term is expanded as follows. 

∇𝜙 = [
𝑑𝜙

𝑑𝑥

𝑑𝜙

𝑑𝑦

𝑑𝜙

𝑑𝑧
]         (2.5) 

First order central differencing can be used to approximate these derivative 

values.  This finite difference scheme is 2nd order accurate. 

 
𝑑𝜙

𝑑𝑥
=

𝜙𝑖+1−𝜙𝑖−1

2𝑑𝑥
           (2.6) 

For clarity, notations defined below can replace the subscript indices with the cell 

neighbor direction.  

 

[
 
 
 
 
 
𝜙𝑖+1,𝑗 = 𝜙𝐸

𝜙𝑖−1,𝑗 = 𝜙𝑊

𝜙𝑖,𝑗+1 = 𝜙𝑁

𝜙𝑖,𝑗−1 = 𝜙𝑆

𝜙𝑖,𝑗 = 𝜙𝐼𝐶 ]
 
 
 
 
 

  

𝐸𝐴𝑆𝑇
𝑊𝐸𝑆𝑇
𝑁𝑂𝑅𝑇𝐻
𝑆𝑂𝑈𝑇𝐻

𝐶𝑈𝑅𝑅𝐸𝑁𝑇

          (2.7) 

The finite difference equation is rewritten below in terms of cell neighbors. 

𝑑𝜙

𝑑𝑥
=

𝜙𝐸−𝜙𝑊

2𝑑𝑥
           (2.8) 

This can also be expressed in terms of the values at the cell faces. 

𝑑𝜙

𝑑𝑥
=

𝜙𝐸+𝜙𝐼𝐶
2

−
𝜙𝐼𝐶+𝜙𝑊

2

𝑑𝑥
         (2.9) 
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If either of these faces lie on the Cartesian domain boundary, the cell spacing is 

not a full cell (dx) away.  The finite difference scheme must be updated accordingly.  

This condition is illustrated in Figure 7a.  Domain boundary cells are positioned on the 

cell face, so those values should directly be substituted into the finite difference scheme 

as shown below for a west domain boundary. 

𝑑𝜙

𝑑𝑥
|
𝑊𝑏𝑑𝑟𝑦

=
𝜙𝐸+𝜙𝐼𝐶

2
−𝜙𝑊

𝑑𝑥
         (2.10) 

For convenience Equation 2.10 can be split into two arguments as shown below.  

The first will be executed on all domain interior cells, and the second term will only be 

executed on boundary adjacent cells to account for the half cell spacing.  The equation 

below shows this formulation for a west boundary with only the direction indices 

changing for the other boundary directions. 

𝑑𝜙

𝑑𝑥
=

𝜙𝐸+𝜙𝐼𝐶
2

−
𝜙𝐼𝐶+𝜙𝑊

2

𝑑𝑥
+

𝜙𝐼𝐶−𝜙𝑊
2

𝑑𝑥
|
𝑊𝑏𝑑𝑟𝑦

       (2.11) 

 For computational efficiency the first term is split as shown below for the x 

direction. 

𝑑𝜙

𝑑𝑥
=

𝜙𝐸+𝜙𝐼𝐶
2

𝑑𝑥
−

𝜙𝐼𝐶+𝜙𝑊
2

𝑑𝑥
+

𝜙𝐼𝐶−𝜙𝑊
2

𝑑𝑥
|
𝑊𝑏𝑑𝑟𝑦

     (2.12) 

In the x direction the current cell will share the first term with the west neighbor 

and share the second term with the east neighbor.  Rather than duplicating every one of 

these computations, the current cell only calculates the second term.  The value is 
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summed as a negative contribution to the current cell and summed as a positive term to 

the east neighbor.  Each cell will thus receive the first term from the calculation of the 

west neighbor.  After this calculation has been completed on all interior cells, the 

boundary adjacent cells of the west and south boundaries will be missing the neighbor 

contribution of the first term in Equation 2.12.  The conventional domain approach loops 

through the domain boundary cells on the west and south sides.  This allows the those 

domain boundary cells to contribute the missing first term to a single interior cell as 

shown in Figure 7b.  Since interior boundary cap cells are often arranged in a stair step 

manner (Figure 7e), the boundary cap cells at the star step may need to contribute this 

term to east and north neighbors. 

Finally, the conventional approach will loop through all of the domain boundary 

cells to contribute the third term of Equation 2.12 to the interior neighbor.  Since interior 

boundary cap cells are a full cell width as shown in Figure 7d, the third term is ignored. 

2.5.3 Modification to the convection calculation 

 Next consider the convection term.  This term is computed using the velocity 

values from the previous sub-iteration or time step and can be expanded as shown below.   

(𝐮 ∙ ∇)𝐮 = (𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
) [

𝑢
𝑣
] = [

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦

]       (2.13) 

 

For computational efficiency the calculation is broken in half and evaluate at each 

face of the cell.   

𝑑𝑢

𝑑𝑥
=

𝑢𝐸−𝑢𝑊

2𝑑𝑥
=

𝑢𝐸+𝑢𝐼𝐶

2𝑑𝑥
−

𝑢𝐼𝐶+𝑢𝑊

2𝑑𝑥
        (2.14) 
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𝑑𝑢

𝑑𝑦
=

𝑢𝑁−𝑢𝑆

2𝑑𝑦
=

𝑢𝑁+𝑢𝐼𝐶

2𝑑𝑦
−

𝑢𝐼𝐶+𝑢𝑆

2𝑑𝑦
        (2.15) 

𝑑𝑣

𝑑𝑥
=

𝑣𝐸−𝑣𝑊

2𝑑𝑥
=

𝑣𝐸+𝑣𝐼𝐶

2𝑑𝑥
−

𝑣𝐼𝐶+𝑣𝑊

2𝑑𝑥
        (2.16) 

𝑑𝑣

𝑑𝑦
=

𝑣𝑁−𝑣𝑆

2𝑑𝑦
=

𝑣𝑁+𝑣𝐼𝐶

2𝑑𝑦
−

𝑣𝐼𝐶+𝑣𝑆

2𝑑𝑦
        (2.17) 

Each velocity term at the relevant faces is derived below. 

𝑢(𝐸𝐹) =
𝑢𝐸+𝑢𝐼𝐶

2
           (2.18) 

𝑢(𝑊𝐹) =
𝑢𝑊+𝑢𝐼𝐶

2
            (2.19) 

𝑣(𝑁𝐹) =
𝑣𝑁+𝑣𝐼𝐶

2
          (2.20) 

𝑣(𝑆𝐹) =
𝑣𝑆+𝑣𝐼𝐶

2
           (2.21) 

 Each of these terms can be populated in the matrix of above. 

 

[
(
𝑢𝐸+𝑢𝐼𝐶

2

𝑢𝐸+𝑢𝐼𝐶

2𝑑𝑥
−

𝑢𝑊+𝑢𝐼𝐶

2
 
𝑢𝐼𝐶+𝑢𝑊

2𝑑𝑥
  ) + (

𝑣𝑁+𝑣𝐼𝐶

2

𝑢𝑁+𝑢𝐼𝐶

2𝑑𝑦
−

𝑣𝑆+𝑣𝐼𝐶

2

𝑢𝐼𝐶+𝑢𝑆

2𝑑𝑦
)

(
𝑢𝐸+𝑢𝐼𝐶

2

𝑣𝐸+𝑣𝐼𝐶

2𝑑𝑥
−

𝑢𝑊+𝑢𝐼𝐶

2

𝑣𝐼𝐶+𝑣𝑊

2𝑑𝑥
) + (

𝑣𝑁+𝑣𝐼𝐶

2

𝑣𝑁+𝑣𝐼𝐶

2𝑑𝑦
−

𝑣𝑆+𝑣𝐼𝐶

2

𝑣𝐼𝐶+𝑣𝑆

2𝑑𝑦
)

]   (2.22) 

 The terms can then be arranged by the direction of contribution with the east and 

north terms collected to the left and the west and south collected to the right. 

[
(
𝑢𝐸+𝑢𝐼𝐶

2

𝑢𝐸+𝑢𝐼𝐶

2𝑑𝑥
+

𝑣𝑁+𝑣𝐼𝐶

2

𝑢𝑁+𝑢𝐼𝐶

2𝑑𝑦
 ) − (

𝑢𝑊+𝑢𝐼𝐶

2
 
𝑢𝐼𝐶+𝑢𝑊

2𝑑𝑥
+

𝑣𝑆+𝑣𝐼𝐶

2

𝑢𝐼𝐶+𝑢𝑆

2𝑑𝑦
)

(
𝑢𝐸+𝑢𝐼𝐶

2

𝑣𝐸+𝑣𝐼𝐶

2𝑑𝑥
+

𝑣𝑁+𝑣𝐼𝐶

2

𝑣𝑁+𝑣𝐼𝐶

2𝑑𝑦
) − (

𝑢𝑊+𝑢𝐼𝐶

2

𝑣𝐼𝐶+𝑣𝑊

2𝑑𝑥
+

𝑣𝑆+𝑣𝐼𝐶

2

𝑣𝐼𝐶+𝑣𝑆

2𝑑𝑦
)

]   (2.23) 

 For computational efficiency this equation can be split in the same manner as for 

the gradient scalar calculation above.  The terms on the left are summed as a positive 

value for the current cell.  Those same terms will be contributed to the east and north 
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neighbors as a negative value accordingly.  Therefore, the current cell will receive the 

terms on the right side of this matrix from the west and south neighbors.  As before 

boundary cells on the west and south domain boundaries must be computed to include the 

missing term to those boundary adjacent cells.  Again when implementing interior 

boundary caps, the boundary cell at a south-west stair step must contribute flux values to 

two cells. 

2.5.4 Modification for extrapolation to boundary 

To complete the calculation of the convection filed, values must be extrapolated 

to the boundary cells.  Conventional domain boundaries utilize a 1st order forward 

difference.  Since conventional domain boundaries are orthogonal to the Cartesian grid, 

as shown in Figure 7c, the finite difference scheme requires only the two adjacent 

neighbors in the domain normal direction.  Interior boundary conditions often have a 

boundary normal which is non-orthogonal to the domain.  This condition is illustrated in 

Figure 7f.  To construct an equivalent linear extrapolation, a total of four neighboring 

cells are needed.  This is shown in Figure 8.  The boundary normal vector is used to 

project the boundary cap cell location to the next two adjacent cell rows.  The two probe 

points are given values by linear interpolation of the two adjacent cells in each row.  

These two probe values are then used to for linear extrapolation of value to the interior 

boundary cap cell.  

2.5.5 Modifications for the Dirichlet boundary condition 

 Now that all terms on the right hand side of Equation 2.4 are known, the 

Helmholtz equation can then be solved.  To do so, the boundary conditions must first be 

applied.  Dirichlet boundary conditions are applied directly to the boundary cap cells 
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even though they do not lie exactly on the boundary cap plane.  The velocity vector must 

be rotated to the orientation of the boundary cap using the equation below where 𝐮𝐷𝑜𝑚𝑎𝑖𝑛 

is the inlet velocity as would be applied to the side of the Cartesian domain and 𝐮𝐵𝑐𝑎𝑝 is 

the inlet velocity vector rotated to the orientation of the interior boundary cap. 

𝐮𝐷𝑜𝑚𝑎𝑖𝑛 = 𝐐𝐮𝐵𝑐𝑎𝑝          (2.24) 

 Q is an orthogonal rotation tensor that can be constructed from the Cartesian 

domain basis and the interior boundary cap basis as shown below for the 2 dimensional 

case.  The superscript bar denotes the basis vector of the interior boundary cap. 

[𝐐] = [
𝑒1̅ ∙ 𝑒1 𝑒1̅ ∙ 𝑒2

𝑒2̅ ∙ 𝑒1 𝑒2̅ ∙ 𝑒2
]        (2.25) 

In the case of a user defined inlet velocity profile the boundary cell locations are 

projected to the boundary cap line using the following equation.  x is the location vector 

of the boundary cell with p1 and p2 representing the location vector of the boundary cap 

end points.  This projection is illustrated in Figure 9.   

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
(𝐱−𝐩𝟏)∙(𝐩𝟐−𝐩𝟏)

‖𝐩𝟐−𝐩𝟏‖
      (2.26) 

Cubic spline interpolation is used to obtain the velocity value at the projected 

distance. The interpolated value is transformed to the orientation of the boundary cap in 

the same way as before by using Equation 2.24. 

2.5.6 Global mass conservation 

For this framework, conservation of mass is enforced globally.  The total mass 

flux is computed at every inlet and outlet.  Since the interior boundary cap case is likely 
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not pointed in a Cartesian direction, a stair-step approach is used to sum the mass flux at 

the interior boundary cap cells.  Only the component of velocity normal to the stair-step 

boundary are used for this computation.  This mass flux scheme is illustrated below in 

Figure 10.  Any necessary correction is applied to the vessel outlet boundary conditions.  

Since the mass flux correction is summed in the boundary normal direction (Figure 7f), 

the plug velocity correction must be decomposed into the x and y velocity components.  

This is accomplished with the equation below.   

𝐮𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐐𝑇𝐮∆𝐹𝑙𝑢𝑥         (2.27) 

Q is the same rotation tensor as previously defined.  𝐮∆Flux is the discrepancy of 

bulk velocity between the inlets and outlet with 𝐮Correction being the correction velocity 

applied to all boundary cells of the outlet. 

2.5.7 Modifications to the outlet boundary condition 

This framework uses an advection equation to apply a mass conserving Dirchlet 

boundary condition shown below where 𝑈̅ is the bulk velocity through the outlet and n is 

a unit vector normal to interior boundary cap pointing in the direction of flow.   

𝜕𝒖

𝜕𝑡
+ 𝑈̅(∇𝐮)𝐧 = 0         (2.28) 

For this equation to be evaluated in the Cartesian basis, the bulk velocity must be 

rotated using the same transformation from Equation 2.27.  A second order backward 

difference scheme is used to approximate the time derivative. 
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2.5.8 Modification to the Helmholtz equation 

 All terms on the right hand side of the Helmholtz equation (Equation 2.4) are 

known.  The convection term, the pressure gradient, and the velocity values from the two 

previous time steps can be combined into a single array.  This results in the following 

Helmholtz type equation where b is the sum of the known values. 

𝛼1𝐮
∗ − 𝜈∇2𝐮∗ = 𝐛          (2.29) 

Since this equation is a second order PDE, it is beneficial to put it in the form of a 

system of linear equations as shown below, where 𝐀 is the operator matrix, 𝐱 is the vector 

of unknowns, and 𝐛 is the solution vector.   

𝐀𝐱 = 𝐛           (2.30) 

The Helmholtz equation can be expanded as shown below, expressing the second 

derivatives of velocity, where u and v are the velocities in the x and y directions 

respectively.  For simplicity, this is demonstrated for the 2-dimensional case.   

[
𝛼𝑢∗ − 𝜈 (

𝜕2𝑢∗

𝜕𝑥2 +
𝜕2𝑢∗

𝜕𝑦2 )

𝛼𝑣∗ − 𝜈 (
𝜕2𝑣∗

𝜕𝑥2 +
𝜕2𝑣∗

𝜕𝑦2 )
] = [

𝑏𝑥

𝑏𝑦
]        (2.31) 

The second derivative terms can be represented by the second order accurate 

central differencing scheme shown below. 

𝜕2𝑢∗

𝜕𝑥2
=

𝑢𝑖+1,𝑗
∗ −2𝑢𝑖,𝑗

∗ +𝑢𝑖−1,𝑗
∗

𝑑𝑥2
         (2.32)   

𝜕2𝑢∗

𝜕𝑦2
=

𝑢𝑖,𝑗+1
∗ −2𝑢𝑖,𝑗

∗ +𝑢𝑖,𝑗−1
∗

𝑑𝑦2
         (2.33) 
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 Converting these into the Cartesian neighbor indexing per Equation 2.7 yields the 

following notation. 

𝜕2𝑢∗

𝜕𝑥2
=

𝑢𝐸
∗ −2𝑢𝐼𝐶

∗ +𝑢𝑊
∗

𝑑𝑥2
          (2.34) 

𝜕2𝑢∗

𝜕𝑦2
=

𝑢𝑁
∗ −2𝑢𝐼𝐶

∗ +𝑢𝑆
∗

𝑑𝑦2
          (2.35) 

Substituting these expressions into Equation 2.31, results in the following system 

of equations.   

[
𝛼𝑢𝐼𝐶

∗ − 𝜈 (
𝑢𝐸

∗ −2𝑢𝐼𝐶
∗ +𝑢𝑊

∗

𝑑𝑥2
+

𝑢𝑁
∗ −2𝑢𝐼𝐶

∗ +𝑢𝑆
∗

𝑑𝑦2
)

𝛼𝑢𝐼𝐶
∗ − 𝜈 (

𝑣𝐸
∗−2𝑣𝐼𝐶

∗ +𝑣𝑊
∗

𝑑𝑥2
+

𝑣𝑁
∗ −2𝑣𝐼𝐶

∗ +𝑣𝑆
∗

𝑑𝑦2
)

] = [
𝑏𝑥

𝑏𝑦
]      (2.36) 

Finally, these equations can be simplified to the following form.  This result can 

be represented as a stencil of coefficients shown in Figure 11. 

[
𝛼𝑢𝐼𝐶

∗ −
𝜈

𝑑𝑥2
(𝑢𝐸

∗ + 𝑢𝑊
∗ − 2𝑢𝐼𝐶

∗ ) −
𝜈

𝑑𝑦2
(𝑢𝑁

∗ + 𝑢𝑆
∗ − 2𝑢𝐼𝐶

∗ )

𝛼𝑣𝐼𝐶
∗ −

𝜈

𝑑𝑥2
(𝑣𝐸

∗ + 𝑣𝑊
∗ − 2𝑣𝐼𝐶

∗ ) −
𝜈

𝑑𝑦2
(𝑣𝑁

∗ + 𝑣𝑆
∗ − 2𝑣𝐼𝐶

∗ )
] = [

𝑏𝑥

𝑏𝑦
]    (2.37) 

Conventional domain boundary cells have zero thickness in the boundary normal 

direction.  This means the cell center is located on the edge of the interior neighbor, 

resulting in the neighbor cell center being half the cell size away as shown in Figure 7a.  

The finite difference scheme can be partitioned as shown below for the x direction. 

𝜕2𝑢∗

𝜕𝑥2
=

𝑢𝑖+1,𝑗
∗ −2𝑢𝑖,𝑗

∗ +𝑢𝑖−1,𝑗
∗

𝑑𝑥2
=

𝑢𝑖+1,𝑗
∗ −𝑢𝑖,𝑗

∗

𝑑𝑥
−

𝑢𝑖,𝑗
∗ −𝑢𝑖−1,𝑗

∗

𝑑𝑥

𝑑𝑥
       (2.38) 



26 
 

For a west domain boundary, the second term is modified by halving the cell 

spacing as shown below. 

𝜕2𝑢∗

𝜕𝑥2
|
𝑊𝑏𝑑𝑟𝑦

=

𝑢𝑖+1,𝑗
∗ −𝑢𝑖,𝑗

∗

𝑑𝑥
−

𝑢𝑖,𝑗
∗ −𝑢𝑖−1,𝑗

∗

0.5𝑑𝑥

𝑑𝑥
=

𝑢𝑖+1,𝑗
∗ −3𝑢𝑖,𝑗

∗ +2𝑢𝑖−1,𝑗
∗

𝑑𝑥2
  =

𝑢𝐸
∗ −3𝑢𝐼𝐶

∗ +2𝑢𝑊
∗

𝑑𝑥2
 (2.39)   

The same procedure must be constructed in the y direction and combines to result 

in the following equations for the cells adjacent to the west domain boundary.   

[
𝛼𝑢𝐼𝐶

∗
−

𝜈

𝑑𝑥2 (𝑢𝐸
∗ +2𝑢𝑊

∗ −3𝑢𝐼𝐶
∗

) −
𝜈

𝑑𝑦2 (𝑢𝑁
∗ +𝑢𝑆

∗ −2𝑢𝐼𝐶
∗

)

𝛼𝑣𝐼𝐶
∗

−
𝜈

𝑑𝑥2 (𝑣𝐸
∗ +2𝑣𝑊

∗ −3𝑣𝐼𝐶
∗

) −
𝜈

𝑑𝑦2 (𝑣𝑁
∗ +𝑣𝑆

∗ −2𝑣𝐼𝐶
∗

)
]

𝑊𝑏

= [
𝑏𝑥

𝑏𝑦
]    (2.40) 

A visual representation of the corresponding stencil for a west conventional 

domain boundary conditions shown in Figure 12a.  For ease of construction the operator 

matrix these equations can be factored in the following manner for a west boundary 

condition.  Only the cell direction indexes of the fourth term change for other sides of the 

domain  

 [
𝛼𝑢𝐼𝐶

∗ −
𝜈

𝑑𝑥2 (𝑢𝐸
∗ + 𝑢𝑊

∗ − 2𝑢𝐼𝐶
∗ ) −

𝜈

𝑑𝑦2 (𝑢𝑁
∗ + 𝑢𝑆

∗ − 2𝑢𝐼𝐶
∗ ) −

𝜈

𝑑𝑥2 (𝑢𝑊
∗ − 𝑢𝐼𝐶

∗ )

𝛼𝑣𝐼𝐶
∗ −

𝜈

𝑑𝑥2 (𝑣𝐸
∗ + 𝑣𝑊

∗ − 2𝑣𝐼𝐶
∗ ) −

𝜈

𝑑𝑦2 (𝑣𝑁
∗ + 𝑣𝑆

∗ − 2𝑣𝐼𝐶
∗ ) −

𝜈

𝑑𝑥2 (𝑣𝑊
∗ − 𝑣𝐼𝐶

∗ )
]

𝑊𝑏

= [
𝑏𝑥

𝑏𝑦
] (2.41) 

The only difference between this and Equation 2.37 is the addition of the fourth 

term for the boundary adjacent cells.  Since interior boundary caps are at a full cell 

spacing as described in Figure 7d, the fourth term is no longer needed.  The west interior 

boundary cap stencil is shown in Figure 12b. 

The boundary cell values have been already computed during application of the 

inlet and outlet boundary conditions.  Since these velocity values are known, they must 

be lifted to the right hand side of the equation.  First consider a cell located adjacent to a 
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conventional west domain boundary.  After lifting the known value to the right hand side, 

the equation will take the following form. 

[
𝛼𝑢𝐼𝐶

∗
−

𝜈

𝑑𝑥2 (𝑢𝐸
∗ −2𝑢𝐼𝐶

∗
) −

𝜈

𝑑𝑦2 (𝑢𝑁
∗ +𝑢𝑆

∗ −2𝑢𝐼𝐶
∗

)

𝛼𝑣𝐼𝐶
∗

−
𝜈

𝑑𝑥2
(𝑣𝐸

∗ −2𝑣𝐼𝐶
∗

) −
𝜈

𝑑𝑦2
(𝑣𝑁

∗ +𝑣𝑆
∗ −2𝑣𝐼𝐶

∗
)
]

𝑊𝑏

= [
𝑏𝑥 +

𝜈2𝑢𝑊
∗

𝑑𝑥2

𝑏𝑦 +
𝜈2𝑣𝑊

∗

𝑑𝑥2

]    (2.42) 

Since interior boundary caps allow for boundary orientations other than 

orthogonal, as shown in Figure 7f, the cells are often arranged in a stair step manner.  

When this occurs there will be interior cells which have more than one boundary cell 

neighbor.  This is shown in Figure 7e.  The equation below is the example of the 

boundary condition lift when the cell has a boundary cap cell to the west and a boundary 

cap cell to the north. 

[
𝛼𝑢𝐼𝐶

∗ −
𝜈

𝑑𝑥2
(𝑢𝐸

∗ − 3𝑢𝐼𝐶
∗ ) −

𝜈

𝑑𝑦2
(𝑢𝑆

∗ − 2𝑢𝐼𝐶
∗ )

𝛼𝑣𝐼𝐶
∗ −

𝜈

𝑑𝑥2
(𝑣𝐸

∗ − 3𝑣𝐼𝐶
∗ ) −

𝜈

𝑑𝑦2
(𝑣𝑆

∗ − 2𝑣𝐼𝐶
∗ )

]

𝑊/𝑁𝑏

= [
𝑏𝑥 +

𝜈2𝑢𝑊
∗

𝑑𝑥2 +
𝜈𝑢𝑁

∗

𝑑𝑦2

𝑏𝑦 +
𝜈2𝑣𝑊

∗

𝑑𝑥2 +
𝜈𝑣𝑁

∗

𝑑𝑦2

]  (2.43) 

To enhance stability of the non-staggered grid, the pressure gradient is removed 

from the provisional velocity resulting in a second provisional velocity denoted by 𝐮∗∗. 

2.5.9 Modification to the divergence calculation 

 Next the divergence operation is performed on the second provisional velocity to 

construct the pressure Poisson equation.  The term is expanded as follows for the 2 

dimensional case. 

∇ ∙ 𝐮∗∗ = ∑
𝑑𝑢𝑖

∗∗

𝑑𝑥𝑖
=

𝑑𝑢∗∗

𝑑𝑥
+

𝑑𝑣∗∗

𝑑𝑦
         (2.44) 
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First order central differencing can be used to approximate these derivative 

values.  This finite difference scheme is 2nd order accurate and shown below for the x 

direction. 

∇ ∙ 𝐮∗∗ =
𝑢𝑖+1

∗∗ −𝑢𝑖−1
∗∗

2𝑑𝑥
+

𝑣𝑗+1
∗∗ −𝑣𝑗−1

∗∗

2𝑑𝑦
       (2.45) 

For clarity, notations are replaced with the subscript indices of cell neighbor 

directions.  The finite difference equation is rewritten below in terms of cell neighbors. 

∇ ∙ 𝐮∗∗ =
𝑢𝐸

∗∗−𝑢𝑊
∗∗

2𝑑𝑥
+

𝑣𝑁
∗∗−𝑣𝑆

∗∗

2𝑑𝑦
        (2.46) 

This can also be expressed in terms of the values at the cell faces. 

∇ ∙ 𝐮∗∗ =
𝑢𝐸
∗∗+𝑢𝐼𝐶

∗∗

2
−

𝑢𝐼𝐶
∗∗+𝑢𝑊

∗∗

2

𝑑𝑥
+

𝑣𝑁
∗∗−𝑣𝐼𝐶

∗∗

2
−

𝑣𝐼𝐶
∗∗−𝑣𝑆

∗∗

2

𝑑𝑥
       (2.47) 

If either of these faces lie on the Cartesian domain boundary, the cell spacing is 

not a full cell (dx) away.  The finite difference scheme must be updated accordingly.  

This condition is illustrated in Figure 7a.  Domain boundary cells are positioned on the 

cell face, so those values should directly be substituted into the finite difference scheme 

as shown below for a West domain boundary. 

∇ ∙ 𝐮∗∗|𝑊𝑏𝑑𝑟𝑦 =
𝑢𝐸

∗∗+𝑢𝐼𝐶
∗∗

2
−𝑢𝑊

∗∗

𝑑𝑥
+

𝑣𝑁
∗∗−𝑣𝐼𝐶

∗∗

2
−

𝑣𝐼𝐶
∗∗−𝑣𝑆

∗∗

2

𝑑𝑥
       (2.48) 

For computational efficiency Equation 2.47 can be split into three arguments as 

shown below.  The first two will be executed on all domain interior cells, and the third 

term will only be executed on boundary adjacent cells to account for the half cell spacing.  
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The equation below shows this formulation for a west boundary with only the direction 

indices changing for the other boundary directions. 

∇ ∙ 𝐮∗∗ =
𝑢𝐸
∗∗+𝑢𝐼𝐶

∗∗

2
−

𝑢𝐼𝐶
∗∗+𝑢𝑊

∗∗

2

𝑑𝑥
+

𝑣𝑁
∗∗−𝑣𝐼𝐶

∗∗

2
−

𝑣𝐼𝐶
∗∗−𝑣𝑆

∗∗

2

𝑑𝑥
+

𝑢𝐼𝐶
∗∗−𝑢𝑊

∗∗

2

𝑑𝑥
|

𝑊𝑏𝑑𝑟𝑦

    (2.49) 

Since the interior boundary cap cells are inserted into the domain boundary 

arrays, without modification the second term would be applied to them even though they 

are at a full cell spacing as illustrated in Figure 7d.  Thus, the only modification to the 

gradient scalar calculation for interior boundary cap implementation is to remove the 

third term of Equation 2.49. 

2.5.10 Modifications to the Pressure Poisson equation 

The scalar potential 𝜑 can be calculated from the following equation which is of 

the Poisson type.  The negative signs are added so that construction of the operator matrix 

is similar to that of the Helmholtz equation.   

−∇2𝜑 = −𝛼(∇ ∙ 𝐮∗∗)          (2.50) 

 

Since this equation is a second order PDE, it is necessary to put it in the form of a 

system of linear equations as shown in Equation 2.30, where 𝐀 is the operator matrix, 𝐱 is 

the vector of unknowns, and 𝐛 is the solution vector.  In this case the 𝐛 vector contains a 

time step scalar multiplied by the divergence of 𝐮∗∗.  The Poisson equation can be 

expanded as shown below, expressing the second derivatives of in the x and y directions 

respectively.  For simplicity, this is demonstrated for the 2-dimensional case.   

−(
𝜕2𝜑

𝜕𝑥2 +
𝜕2𝜑

𝜕𝑦2) = −𝛼(∇ ∙ 𝐮∗∗)        (2.51) 
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The second derivative terms can be represented by the second order accurate 

central differencing schemes shown below. 

𝜕2𝜑

𝜕𝑥2
=

𝜑𝑖+1,𝑗−2𝜑𝑖,𝑗+𝜑𝑖−1,𝑗

𝑑𝑥2
           (2.52)    

 
𝜕2𝜑

𝜕𝑦2
=

𝜑𝑖,𝑗+1−2𝜑𝑖,𝑗+𝜑𝑖,𝑗−1

𝑑𝑦2
        (2.53) 

 

For clarity, notations defined below can replace the subscript indices with the cell 

neighbor direction as defined in Equation 2.7. 

𝜕2𝜑

𝜕𝑥2
=

𝜑𝐸−2𝜑𝐼𝐶+𝜑𝑊

𝑑𝑥2
            (2.54)  

𝜕2𝜑

𝜕𝑦2
=

𝜑𝑁−2𝜑𝐼𝐶+𝜑𝑆

𝑑𝑦2
          (2.55) 

 

Substituting these expressions into the left side of Equation 2.51 results in the 

following equation.  A visual representation of this stencil for interior cells is shown in 

Figure 13. 

−
1

𝑑𝑥2
(𝜑𝐸 + 𝜑𝑊 − 2𝜑𝐼𝐶) −

1

𝑑𝑦2
(𝜑𝑁 + 𝜑𝑆 − 2𝜑𝐼𝐶) = −𝛼(∇ ∙ 𝐮∗∗)   (2.56) 

When using conventional domain boundary conditions, the boundary adjacent 

cells must be modified for the half cell spacing.  For example the finite difference term in 

the x direction at a west boundary can be represented by the following equation. 

𝜕2𝜑

𝜕𝑥2
|
𝑊𝑏

=

𝜑𝑖+1,𝑗−𝜑𝑖,𝑗

𝑑𝑥
−

𝜑𝑖,𝑗−𝜑𝑖−1,𝑗

0.5𝑑𝑥

𝑑𝑥
=

𝜑𝑖+1,𝑗−3𝜑𝑖,𝑗+2𝜑𝑖−1,𝑗

𝑑𝑥2
  =

𝜑𝐸−3𝜑𝐼𝐶+2𝜑𝑊

𝑑𝑥2
  (2.57)       

The same procedure must be constructed in the y direction and combines to result 

in the following equation for the cells adjacent to the west domain boundary.  A visual 

representation of this cell is shown in Figure 14a. 
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−
1

𝑑𝑥2
(𝜑𝐸 + 2𝜑𝑊 − 3𝜑𝐼𝐶) −

1

𝑑𝑦2
(𝜑𝑁 + 𝜑𝑆 − 2𝜑𝐼𝐶)|

𝑊𝑏
= −𝛼(∇ ∙ 𝐮∗∗)  (2.58) 

Neumann boundary conditions are then constructed for the domain boundary.  

This example will continue to consider the west boundary, again recalling 
1

2
𝑑𝑥 is the cell 

spacing at the domain boundary. 

𝜕𝜑

𝜕𝑛𝑊
=

𝜑𝐼𝐶−𝜑𝑊

0.5𝑑𝑥
= 𝐶        (2.59) 

Since 𝜑𝑊 is treated as a known value in the system of linear equations, an 

expression for this value must be created.  Solving the previous equation for 𝜑𝑊 results 

in the following. 

𝜑𝑊 = 𝜑𝐼𝐶 − 0.5𝐶𝑑𝑥         (2.60) 

 

This can now be substituted back into Equation 2.58 to apply the boundary 

condition.  A visual representation of the final domain adjacent cell with boundary 

conditions applied to the operator matrix can be seen in Figure 14a. 

 

−
1

𝑑𝑥2
(𝜑𝐸 − 𝜑𝐼𝐶) −

1

𝑑𝑦2
(𝜑𝑁 + 𝜑𝑆 − 2𝜑𝐼𝐶)|

𝑊𝑏
= −𝛼(∇ ∙ 𝐮∗∗) −

𝐶

𝑑𝑥
  (2.61) 

 

Implementation of internal boundary caps will results with the same calculation 

on interior cells, but Poisson construction at the boundary caps must be modified due to 

all three major difference illustrated in Figure 7.  The modification in Equation 2.58 for 

the half cell spacing at conventional domain boundary is no longer needed, thus the 

interior boundary cap formulation will start with Equation 2.56. 

As before, a Neumann boundary condition must be constructed for the domain 

boundary.  For interior boundary caps, the normal direction is not necessarily normal to 

the domain boundary as shown in Figure 7f.  The Neumann boundary condition must be 
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constructed from the boundary cell and interpolated point between neighbors in much the 

same way extrapolation to the boundary was previously performed.  This approach 

differs in the fact that the values at the neighbor cells are not known as well.  Instead an 

analytical substitution must be derived to replace the boundary cell Poisson contribution 

to the operator matrix.  To explain, consider a west boundary cap cell with the boundary 

cap pointed downward an angle less than 45 degrees.  This configuration is shown in 

Figure 15a-b.  The equation below constructs the Neumann equation using linear 

interpolation between the adjacent cells with the λ values representing the geometric 

position of the interpolation point. 

𝜕𝜑

𝜕𝑛
=

𝜑𝐼𝐶−𝜑𝑃

𝑑𝑛
=

𝜆1𝜑𝐼𝐶+𝜆2𝜑𝑆−𝜑𝑊

𝑑𝑛
= 𝐶       (2.62) 

Solving this equation for the west term and substituting into equation 2.56 will 

provide the following result which is shown in Figure 14b. 

−
1

𝑑𝑥2
(𝜑𝐸 + (𝜆1 − 2)𝜑𝐼𝐶 + 𝜆2𝜑𝑆) −

1

𝑑𝑦2
(𝜑𝑁 + 𝜑𝑆 − 2𝜑𝐼𝐶)|

𝑊𝑏
= −𝛼(∇ ∙ 𝐮∗∗) −

𝐶𝑊𝑑𝑛

𝑑𝑥2  (2.63) 

 

There exists a second interior boundary cap arrangement when substituting for the 

Neumann condition.  The boundary adjacent cell at the stair step will have two boundary 

neighbors in the stencil as shown in Figure 15c.  Equation 2.62 again must be applied to 

the boundary cell to the west.  This equation is also used to create the algebraic 

substitution for the north boundary neighbor as well. 

𝜑𝑁 = 𝜆1𝜑𝑁𝐸 + 𝜆2𝜑𝐸 − 𝐶𝑁𝑑𝑛       (2.64) 

When solved and substituted into Equation 2.56 the following results.  This stair 

step cell stencil is shown in Figure 14c. 
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−
1

𝑑𝑥2
(𝜑𝐸 + (𝜆1 − 2)𝜑𝐼𝐶 + 𝜆2𝜑𝑆) −

1

𝑑𝑦2
(𝜆1𝜑𝑁𝐸 + 𝜆2𝜑𝐸 + 𝜑𝑆 − 2𝜑𝐼𝐶)|

𝑊𝑏
=

                −𝛼(∇ ∙ 𝐮∗∗) −
𝐶𝑊𝑑𝑛

𝑑𝑥2 −
𝐶𝑁𝑑𝑛

𝑑𝑦2        (2.65) 

It should be noted that the new stencil for this cell includes a north-east neighbor 

that wasn’t in the initial stencil.  This is shown in Figure 15d. 

After solving the pressure Poisson equation, the values are extrapolated to the 

boundary as done prior.  These results are used to project onto the divergence free 

velocity field to get the final velocity value for the current sub-iteration using the 

following equation where α is a scalar function of time step size. 

𝐮𝑛+1 = −
∇𝜑

𝛼
+𝐮∗∗         (2.66) 

Finally the pressure can be updated using the equation below   

𝑝𝑛+1 = 𝜑 −
1

𝑅𝑒
(∇ ∙ 𝐮∗)        (2.67) 
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Figure 4: Comparison of computational domain construction between (a-d) conventional 

domain boundary conditions and (e-h) interior boundary caps.  (a,e) set up initial grid and 

insert geometry, (b,f) prune mesh and apply boundary caps, (c,g) refine mesh and classify 

cells as fluid/solid, (d,h) perform flow simulation. 

 

   

d h 

g c 

f b 
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Figure 5: Some of the new geometric configurations interior boundary caps allow.  The 

fluid domain is marked in dark gray.  (a) Entire geometry inside the domain, (b) All 

inlets/outlets crossing domain boundaries, (c) Combination of each, (d) Interior boundary 

caps used with conventional domain boundary conditions.  

 

b a 

c d 
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Figure 6: Comparison of how boundary conditions cells are selected (a-c) conventional 

domain boundaries (d-f) interior boundary conditions, (a,d) initial grid, (b,e) insert 

geometry and reclassify outside cells as solid, (c ) level set values are used to identify 

domain boundary cells, (f) level set values and boundary cap plane are used to identify 

boundary cap cells and cells outside the place are changed to solid. 

a 

b 

c 

d 

e 

f 
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Figure 7: Differences between conventional domain boundary cells (a-c) and interior 

boundary cap cells (d-f).  (a,d) boundary cell spacing,  (b,e) flux contribution to 

neighbors, (c,f) boundary condition normal. 

a 

b 

c 

d 

e 

f 
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Figure 8: Linear extrapolation to boundary.  Interpolation between the encircled cells is 

used to determine values of the probe points (solid black circles). 

 

 

Figure 9: Dirichlet boundary condition projection for interior boundary conditions. 
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Figure 10: Calculation of mass flux using stair step method. 

 

 

Figure 11: Helmholtz equation stencil of coefficients for interior cells. 
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Figure 12: Helmholtz equation stencil of coefficients for boundary adjacent cells (a) 

conventional domain boundaries (b) interior boundary conditions. 

 

 

Figure 13: Pressure Poisson equation stencil of coefficients for interior cells. 

a b 
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Figure 14: Pressure Poisson equation stencil of coefficients for west boundary adjacent 

cells (a) conventional domain boundaries, (b) typical interior boundary conditions, (c) 

stair step interior boundary conditions. 

a 

b c 
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Figure 15: Neumann conditions for construction of the Poisson operator matrix at 

boundary adjacent cells noted by a plus, (a) typical boundary adjacent stencil including a 

single boundary neighbor, (b) indication of cells needed to apply substitution for 

boundary cell, (c) boundary adjacent stencil at stair step showing two boundary 

neighbors, (d) boundary adjacent stencil for stair step cell for substitution of boundary 

cells. 

 

  

a 

c

\

c 

d 
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CHAPTER 3 VALIDATION 

 Upon completing all of the modifications listed above, it is important to validate 

the successful implementation of the interior boundary cap method.  It is necessary to 

compare the boundary cap results will analytical results, simulations performed using 

conventional domain boundary conditions, and simulations performed using commercial 

software.  It should be noted that all modified finite difference schemes have maintained 

the individual order of accuracy. 

3.1 Validation of Poiseuille flow 

Poiseuille flow is the first case considered to validate the implementation of 

interior boundary caps.  An interior boundary cap simulation at 20 degree decline is 

compared to a conventional domain simulation.  Both have a plug inlet velocity assigned 

to the left end (Re = 100).  Figure 16 shows the resulting velocity magnitude contours 

which are in excellent agreement.   

Velocity profiles of these two cases are also compared in Figure 17.  Figure 17a 

shows the center line velocity profile along the length of the tube for both simulations.  

Not only do these profiles match very well, but they also show the length of development 

is in good agreements with the analytical solution of 6 diameters, calculated using the 

following equation for laminar flow. 

𝐿𝑒 = 0.06(𝑅𝑒)𝐷         (3.1) 

  Figure 17b shows the velocity profiles at a cross section located at 8 diameter 

lengths from the inlet.  There is good agreement between the velocity profiles.  The 
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maximum centerline velocity at this fully developed section is also in excellent 

agreement with the analytical solution (Table 1).  Some of this error can be attributed to 

the centerline of the tube being at the coarsest level of mesh refinement. 

3.2 Validation of 2D aortic arch with commercial software 

The next validation piece is selected to demonstrate the full capability possible 

with the implementation of interior boundary caps.  A 2D idealized aorta model is 

simulated using interior boundary caps and with commercial software ANSYS® Fluent.  

A body-fitted surface mesh was generated for the Fluent simulation.  The interior 

boundary cap simulation utilized a total of five boundary caps.  Three of these were 

mapped to the north domain boundary and two being mapped to the south boundary.  The 

angle of the boundary cap ranges from horizontal (0 degrees) to 41 degrees.  A plug inlet 

velocity (Re = 100) is applied to the ascending aorta, with the four outlets being 

constrained by mass split.  Figure 18 shows velocity magnitude contours for both 

software packages.  The results show excellent agreement.  To further compare these 

results, velocity profiles were extracted for comparison at the ascending aorta, between 

the second and third branching vessels, and in the descending aorta.  The results are in 

excellent agreement as shown below in Figure 19.  
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Figure 16: Velocity magnitude comparison (Re = 100) using pELAFINT3D with interior 

boundary caps (top) to pELAFINT3D using conventional domain boundaries (bottom). 
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Figure 17: Poiseuille flow validation at Re = 100. (top) longitudinal centerline velocity, 

(bottom) fully developed radial velocity profile at 8 diameters from the inlet. 
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Table 1: Comparison of boundary cap maximum 

centerline velocity to the analytical value 

Boundary Cap Analytical Error

1.502 1.500 0.001  

 

 

Figure 18: Velocity magnitude comparison (Re = 100) between pELAFINT3D using 

interior boundary caps (left) and ANSYS® Fluent (right). 
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Figure 19: Comparison of velocity profiles between pELAFINT3D with interior 

boundary caps and commercial software Fluent at selected locations.  
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CHAPTER 4 EMPLOYING INTERIOR BOUNDARY CAPS TO MODEL 

IMAGE-BASED GEOMETRY 

4.1 Image-to-flow on patient-specific data 

 The method of interior boundary caps can now be extended to patient-specific 

images.  Figure 20a shows the image data of a patients descending aorta.  This is often a 

region of interest, as abdominal aortic aneurysms are known to occur in this region.  An 

active contours method of image segmentation was used to generate the level set field 

shown in Figure 20b [27].  Interior boundary caps were then applied to the level set 

allowing for flow simulation to be completed.  The resulting velocity magnitude contours 

are shown in Figure 20c.  This simulation was performed at steady state with a Reynolds 

number of 115 achieved by supplying a parabolic inlet velocity profile.  Neither flow 

extensions nor a surface mesh were used to conduct this simulation.  This example 

clearly shows the benefit of interior boundary caps.       

4.2 Other image-to-flow uses 

 While the method of interior boundary caps is an important step toward patient 

specific modeling in the clinical setting, it can also be useful for many other applications.  

Internal boundary caps decrease the amount of skill, training, and third party software 

needed for educational purposes or experimental investigations.   

4.2.1 Image-to-flow on computer drawn image 

For example, one can now create an image using a computer drawing program, 

identify the location of the interior boundary caps, and perform a flow simulation.  

Neither a surface mesh nor flow extensions are needed.  An example of this is shown in 
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Figure 21.  The computer drawn image of 128 x 128 pixels is shown on the left with the 

resulting velocity contours shown on the right.  A parabolic velocity was applied to the 

inlet at the upper left at a Reynolds number of 100. 

4.2.2 Image-to-flow on hand drawn image 

 If generation of an image by computer drawing program is burdensome, the 

image can simply be drawn by hand as shown below in Figure 22a.  This image loosely 

represents a fusiform aneurysm.  The image was then scanned and converted to a 

grayscale image.  A parabolic inlet velocity was applied to the left end at a Reynolds 

number of 100.  The results of the flow simulation is shown in Figure 22b.   

 A second example of a hand drawn image is shown in Figure 23a.  Rather than 

using a scanner, a cellphone camera captured the image.  It again was converted to 

grayscale to conduct the flow simulation.  The results are shown in Figure 23b with a 

parabolic inlet velocity applied to the left at a Reynolds number of 100. 
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Figure 20: Image to flow simulation on patient specific data.  (left) patient image data of 

descending aorta, (center) level set field generated from image segmentation with interior 

boundary cap locations marked, (right) velocity magnitude contours at Re of 115 with 

parabolic inlet velocity profile. 

 

 

    

Figure 21: Image-to-flow on computer drawn image. (left) 128 x 128 pixel image, (right) 

Velocity magnitude contours at Re = 100. 
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Figure 22: Image-to-flow via scanner. (left) hand drawn image, (right) Velocity 

magnitude contours at Re = 100. 

 

 

   

Figure 23: Image-to-flow via cellphone camera. (left) hand drawn image, (right) Velocity 

magnitude contours at Re = 100. 
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CHAPTER 5 CONCLUSIONS 

5.1 Summary 

The method of interior boundary cap has been developed, validated, and 

demonstrated to be an alternative to using Cartesian grid solvers with flow extensions.  

Interior boundary caps eliminate the burdensome constraints of vessel extension and 

orientation to the sides of the cuboidal domain boundary, allowing for the flexibility of 

Cartesian grid solvers to accommodate the wide variety of tortuous and maligned patient-

specific geometries.  This is a necessity before clinical applications of patient-specific 

modeling are to be implemented with a Cartesian solver.  While this method is a 

significant step toward patient-specific modeling in the clinical environment, there exists 

opportunity to further automate the modeling process and provide clinicians with tools to 

make predictive analysis of disease progressions and treatment strategies. 

5.2 Limitations and future work 

 While the method of interior boundary caps is an exciting development in the 

drive for patient specific modeling in the clinical setting, it is currently only developed 

for 2D applications.  Extension to 3D should be fairly straightforward.  While the 

discretization scheme modifications to the flow solver will be similar, there are other 

challenges that must be overcome.  For example, the geometric stencils for constructing 

the directional derivatives at the boundary will become increasingly complex in three 

dimensions and thus implementing a least squares approach would be a suitable 

alternative.  Also the calculation of boundary cap area and mass flux in three dimensions 

will be more complicated.  Alternative methods such as cut cells should be considered.   
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One of the biggest strengths of Cartesian grid solvers is their ability to 

accommodate large displacements and moving objects.  Currently, the method of internal 

boundary caps does not accommodate displacement of the vessel.  Coronary artery 

simulation is one example in which this capability could be of use.  It has been shown 

that the displacement of the coronary vessels throughout the cardiac cycle can have 

significant impacts on values of wall shear stress and oscillatory shear index [29].  A 

second type of vessel motion should also be considered.  The current implementation of 

interior boundary caps does not accommodate vessel compliance.  Vessel wall 

displacement has been shown to significantly impact patient simulation results as well 

[30], [31].   

Extension to 3D, vessel displacement, and vessel wall elasticity in that order of 

development will continue to increase the usefulness and capability of patient-specific 

CFD models in the clinical setting. 

  



55 
 

REFERENCES 

[1] H. C. Groen, F. J. H. Gijsen, A. van der Lugt, M. S. Ferguson, T. S. Hatsukami, A. 

F. W. van der Steen, C. Yuan, and J. J. Wentzel, “Plaque Rupture in the Carotid 

Artery Is Localized at the High Shear Stress Region A Case Report,” Stroke, vol. 

38, no. 8, pp. 2379–2381, Aug. 2007. 

[2] M. Esmaily-Moghadam, T.-Y. Hsia, and A. L. Marsden, “The assisted bidirectional 

Glenn: A novel surgical approach for first-stage single-ventricle heart palliation,” J. 

Thorac. Cardiovasc. Surg., vol. 149, no. 3, pp. 699–705, Mar. 2015. 

[3] I. Borazjani, L. Ge, and F. Sotiropoulos, “High-Resolution Fluid–Structure 

Interaction Simulations of Flow Through a Bi-Leaflet Mechanical Heart Valve in an 

Anatomic Aorta,” Ann. Biomed. Eng., vol. 38, no. 2, pp. 326–344, Oct. 2009. 

[4] C. A. Taylor, T. A. Fonte, and J. K. Min, “Computational Fluid Dynamics Applied 

to Cardiac Computed Tomography for Noninvasive Quantification of Fractional 

Flow ReserveScientific Basis,” J. Am. Coll. Cardiol., vol. 61, no. 22, pp. 2233–

2241, Jun. 2013. 

[5] N. H. J. Pijls, B. de Bruyne, K. Peels, P. H. van der Voort, H. J. R. M. Bonnier, J. 

Bartunek, and J. J. Koolen, “Measurement of Fractional Flow Reserve to Assess the 

Functional Severity of Coronary-Artery Stenoses,” N. Engl. J. Med., vol. 334, no. 

26, pp. 1703–1708, Jun. 1996. 

[6] G. Xiong, G. Choi, and C. A. Taylor, “Virtual interventions for image-based blood 

flow computation,” Comput.-Aided Des., vol. 44, no. 1, pp. 3–14, Jan. 2012. 

[7] J. R. Cebral, F. Mut, D. Sforza, R. Löhner, E. Scrivano, P. Lylyk, and C. Putman, 

“Clinical application of image‐based CFD for cerebral aneurysms,” Int. J. Numer. 

Methods Biomed. Eng., vol. 27, pp. 977–992, 2010. 

[8] C. A. Taylor and D. A. Steinman, “Image-based modeling of blood flow and vessel 

wall dynamics: applications, methods and future directions,” Ann. Biomed. Eng., 

vol. 38, pp. 1188–1203, 2010. 

[9] E. J. Bekkers and C. A. Taylor, “Multiscale Vascular Surface Model Generation 

From Medical Imaging Data Using Hierarchical Features,” IEEE Trans. Med. 

Imaging, vol. 27, no. 3, pp. 331 –341, Mar. 2008. 

[10] J. A. Sethian, Level-Set Methods and Fast Marching Methods: Evolving Interfaces 

in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials 

Science. Cambrige: Cambrige University Press, 1999. 

[11] S. Osher, “Fronts Propagating with Curvature Dependent Speed Algorithms Based 

on Hamilton-Jacobi Formulations,” J. Comput. Phys., vol. 79, pp. 12–49, 1988. 



56 
 

[12] W. E. Lorensen and H. E. Cline, “Marching Cubes: A High Resolution 3D Surface 

Construction Algorithm,” in Proceedings of the 14th Annual Conference on 

Computer Graphics and Interactive Techniques, New York, NY, USA, 1987, pp. 

163–169. 

[13] K. Yokoi, F. Xiao, H. Liu, and K. Fukasaku, “Three-dimensional numerical 

simulation of flows with complex geometries in a regular Cartesian grid and its 

application to blood flow in cerebral artery with multiple aneurysms,” J. Comput. 

Phys., vol. 202, no. 1, pp. 1–19, Jan. 2005. 

[14] T. Deschamps, P. Schwartz, D. Trebotich, P. Colella, D. Saloner, and R. Malladi, 

“Vessel segmentation and blood flow simulation using Level-Sets and Embedded 

Boundary methods,” Int. Congr. Ser., vol. 1268, pp. 75–80, Jun. 2004. 

[15] K. Kumahata, M. Watanabe, and T. Matsuzawa, “Blood Flow Simulation System 

with Interaction between Blood Flow and Blood Vessel Wall using Image Based 

Cartesian Grid,” J. Biomech. Sci. Eng., vol. 3, no. 2, pp. 85–100, 2008. 

[16] M. Garbey and B. Hadri, “Toward a Real Time, Image Based CFD,” in Domain 

Decomposition Methods in Science and Engineering XVII, U. Langer, M. 

Discacciati, D. E. Keyes, O. B. Widlund, and W. Zulehner, Eds. Springer Berlin 

Heidelberg, 2008, pp. 509–515. 

[17] R. Botnar, E. Nagel, M. B. Scheidegger, E. M. Pedersen, O. Hess, and P. Boesiger, 

“Assessment of prosthetic aortic valve performance by magnetic resonance velocity 

imaging,” Magn. Reson. Mater. Phys. Biol. Med., vol. 10, no. 1, pp. 18–26, Feb. 

2000. 

[18] S. Marella, S. Krishnan, H. Liu, and H. S. Udaykumar, “Sharp interface Cartesian 

grid method I: An easily implemented technique for 3D moving boundary 

computations,” J. Comput. Phys., vol. 210, no. 1, pp. 1–31, Nov. 2005. 

[19] R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, “A non-oscillatory Eulerian 

approach to interfaces in multimaterial flows (the ghost fluid method),” J. Comput. 

Phys., vol. 152, no. 2, pp. 457–492, Jul. 1999. 

[20] R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, and A. von Loebbecke, 

“A versatile sharp interface immersed boundary method for incompressible flows 

with complex boundaries,” J. Comput. Phys., vol. 227, no. 10, pp. 4825–4852, May 

2008. 

[21] Y.-H. Tseng and J. H. Ferziger, “A ghost-cell immersed boundary method for flow 

in complex geometry,” J. Comput. Phys., vol. 192, no. 2, pp. 593–623, Dec. 2003. 

[22] H. Choi and P. Moin, “Effects of the Computational Time Step on Numerical 

Solutions of Turbulent Flow,” J. Comput. Phys., vol. 113, no. 1, pp. 1–4, Jul. 1994. 



57 
 

[23] J. Yang and F. Stern, “Sharp interface immersed-boundary/level-set method for 

wave–body interactions,” J. Comput. Phys., vol. 228, no. 17, pp. 6590–6616, Sep. 

2009. 

[24] J. Yang and F. Stern, “A simple and efficient direct forcing immersed boundary 

framework for fluid–structure interactions,” J. Comput. Phys., vol. 231, no. 15, pp. 

5029–5061, Jun. 2012. 

[25] J. Mousel, “A massively parallel adaptive sharp interface solver with application to 

mechanical heart valve simulations,” Theses Diss., Jan. 2012. 

[26] T. Tu, D. R. O’Hallaron, and O. Ghattas, “Scalable Parallel Octree Meshing for 

TeraScale Applications,” in Supercomputing, 2005. Proceedings of the ACM/IEEE 

SC 2005 Conference, 2005, pp. 4–4. 

[27] S. I. Dillard, J. A. Mousel, L. Shrestha, M. L. Raghavan, and S. C. Vigmostad, 

“From medical images to flow computations without user-generated meshes,” Int. J. 

Numer. Methods Biomed. Eng., vol. 30, no. 10, pp. 1057–1083, Oct. 2014. 

[28] H. Luo, H. Dai, P. J. S. A. Ferreira de Sousa, and B. Yin, “On the numerical 

oscillation of the direct-forcing immersed-boundary method for moving 

boundaries,” Comput. Fluids, vol. 56, pp. 61–76, Mar. 2012. 

[29] R. Torii, J. Keegan, N. B. Wood, A. W. Dowsey, A. D. Hughes, G.-Z. Yang, D. N. 

Firmin, S. A. M. Thom, and X. Y. Xu, “MR Image-Based Geometric and 

Hemodynamic Investigation of the Right Coronary Artery with Dynamic Vessel 

Motion,” Ann. Biomed. Eng., vol. 38, no. 8, pp. 2606–2620, Apr. 2010. 

[30] N. M. Maurits, G. E. Loots, and A. E. P. Veldman, “The influence of vessel wall 

elasticity and peripheral resistance on the carotid artery flow wave form: A CFD 

model compared to in vivo ultrasound measurements,” J. Biomech., vol. 40, no. 2, 

pp. 427–436, 2007. 

[31] F. Kabinejadian and D. N. Ghista, “Compliant model of a coupled sequential 

coronary arterial bypass graft: Effects of vessel wall elasticity and non-Newtonian 

rheology on blood flow regime and hemodynamic parameters distribution,” Med. 

Eng. Phys., vol. 34, no. 7, pp. 860–872, Sep. 2012. 

 


	University of Iowa
	Iowa Research Online
	Fall 2015

	Applying vessel inlet/outlet conditions to patient-specific models embedded in Cartesian grids
	Aaron Matthew Goddard
	Recommended Citation


	tmp.1457468285.pdf.advGu

